

Assessment of the nutritional status of Syrian children aged 6–12 years and residents in the Kingdom of Saudi Arabia

Student: Khaled Mohammad Alzoubi
E-MAIL: KHALEDALZOUBI7@GMAIL.COM
Supervisor: Dr. Ghedeir Muslem ALshammari

King Saud University
College of Food & Agriculture Sciences

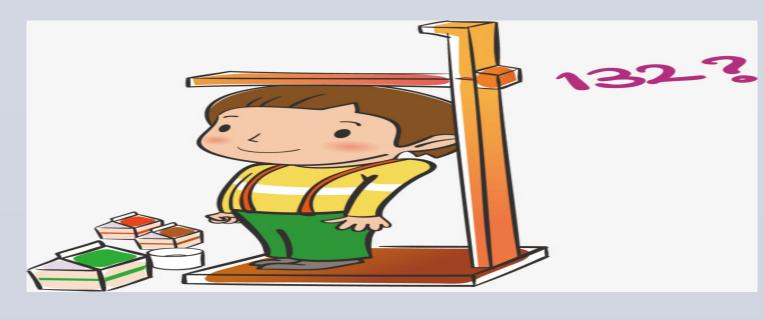
DEP. Food science and Human nutrition

Deanship of Scientific Research

p2

Abstract

Malnutrition is a concerning public health problem in most Middle East countries. This study aimed to assess the nutritional status of 6 - 12-year-old Syrian children living in the Kingdom of Saudi Arabia and their dietary diversity and intake. Anthropometric indices, dietary diversity, and nutrient intake were determined through 24-h recalls. Four children were wasted; 75 malnourished; 2 boys underweight and severely underweight; 61 overweight and obese; and 2, 2, and 1 thin, moderately thin, and severely thin, respectively, whereas the other child was overweight and obese (p>0.05). Mean dietary diversity score was 3.18±0.85, with 59.4, 25.2, and 14.5 as low, medium, and high, respectively. Energy and fiber intakes were low, whereas protein, sugar, and all micronutrients were high, except vitamins D, E, K, Ca, and Fe. Therefore, unbalanced diet leads to malnutrition, stunting, wasting, and thinness, and overweight and obesity are associated with low dietary diversity and improper intakes.


Objective

This study aimed to assess the nutritional status of Syrian children aged 6–12 years living in the Kingdom of Saudi Arabia and evaluate their dietary diversity and intake.

Materials and Methods

- The study was conducted in Riyadh City, Saudi
 Arabia, which hosts most of the Syrians in Saudi
 Arabia.
- A simple random sample of 105 male and female children aged between 6 and 12 years were randomly selected from the study community using random number tables.
- Dietary 24-hour recalls were conducted with parents of each child through home visitations.
 Personal and social data such as physical activities, disease history, and dietary intake (type, quantity, and frequency of food and a brief description of typical daily food intake) were collected.
- Anthropometric measurements including heights
 and weights of each child were measured using
 standardized techniques. Anthropometric
 measurements were compared based on age and
 used to determine the nutritional status of the
 children.

Dietary diversity score (DDS) was constructed based on the parents or caregivers' recall of the child's intake within the past 24 h using the WHO's country-specific adaptation guidance.

- Foods were categorized into six food groups as recommended by the WHO: (1) staples (grains/cereals, roots, and tubers), (2) legumes and nuts, (3) dairy products (milk, yogurt, and cheese), (4) animal/flesh foods (eggs, meat, fish, poultry, and liver/organ meats), (5) vitamin A-rich fruits and vegetables, and (6) other fruits and vegetables.
- Food intake was estimated by calculating the energy consumption in kilocalories and macronutrient and micronutrient consumption using the food processor program from EISHA Company. The results of nutrients analyzed were classified according to the Dietary Requirement Intake (DRI).

Group	Percent	Comparison	Amount (Daily)
<u> </u>	of Rec.		` '
Grains, Total Intake	/1%		4.23 oz equivalent
Grains, Total ecommended			6 oz equivalent
/egetable, Total Intake	84 %		2.10 cup equivalent
/egetable, Total ecommended			2.5 cup equivalent
ruit Intake	39 %		0.59 cup equivalent
ruit Recommended			1.5 cup equivalent
Dairy Intake	46 %		1.37 cup equivalent
Dairy Recommended			3 cup equivalent
Protein Foods Intake	82 %		4.09 oz equivalent
Protein Foods ecommended			5 oz equivalent

• All values were shown as mean \pm standard deviation (SD). All statistical analyses were performed with the SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). The level of significance was set at P < 0.05.

Results

Table 1 Anthropometric results of Syrian children (based on WHO standards, 2006)

(based on WHO standards, 2006)								
Indicators		Female		Male		Total		Mean
		N	N%	N	N%	N	N%	±SD
WAZ	Moderate underweight	1	3.0	0	0.0	1	1.0	0.01±0.78
	Underweight	6	18.2	2	5.1	8	7.6	
	Normal	18	54.5	33	84.6	51	48.6	
	Overweight	6	18.2	4	10.3	10	9.5	
	Obese g1	1	3.0	0	0.0	1	1.0	
	Obese g2	1	3.0	0	0.0	1	1.0	
	Severe stunting	1	2.0	4	7.3	5	4.8	- 0.24±1.48
	Moderate stunting	7	14.3	3	5.5	10	9.5	
HAZ	Stunting	8	16.3	7	10.9	15	14.4	
HAZ	Normal	23	46.9	31	56.4	54	51.4	
	Over height	8	16.3	9	16.4	17	16.2	
	Severe over height	2	4.1	2	3.6	4	3.8	
	Severe thinness	0	0	1	1.8	1	1.0	0.43±1.52
	Moderate thinness	3	6.1	2	2.2	5	4.8	
	Thin	3	6.1	4	7.1	7	6.7	
BAZ	Normal	28	57.1	29	51.8	57	54.3	
	Overweight	11	22.4	15	26.8	26	24.8	
	Obese G1	3	6.1	5	8.9	8	7.6	
	Obese G2	1	2.0	1	1.8	2	1.9	
	Severe malnutrition	15	30.6	20	35	35	33.3	17.6±3.19
	Moderate malnutrition	9	18.4	5	8.9	14	13.3	
BMI	Malnutrition	10	20.4	11	19.6	21	20.0	
	Normal	14	28.6	19	33.9	33	31.4	
	Overweight	1	2.0	0	0.0	1	1.0	
	Obese g1	0	.0	1	1.8	1	1.0	
WHZ	Moderate wasting	3	10	1	2.22	4	5.33	0.72±1.66
	Normal	21	70	36	80	57	76	
	Overweight	3	10	3	6.67	6	8	
	Severe overweight	3	10	5	11.1	8	10.67	

* WAZ: Wight/ Age Z-score; HAZ: Hight/ Age Z-score; BAZ: Body mass

index/ Age Z-score; BMI: Body mass index; WHZ: Wight/hight Z-score

2±1.66

Table 2 Dietary diversity

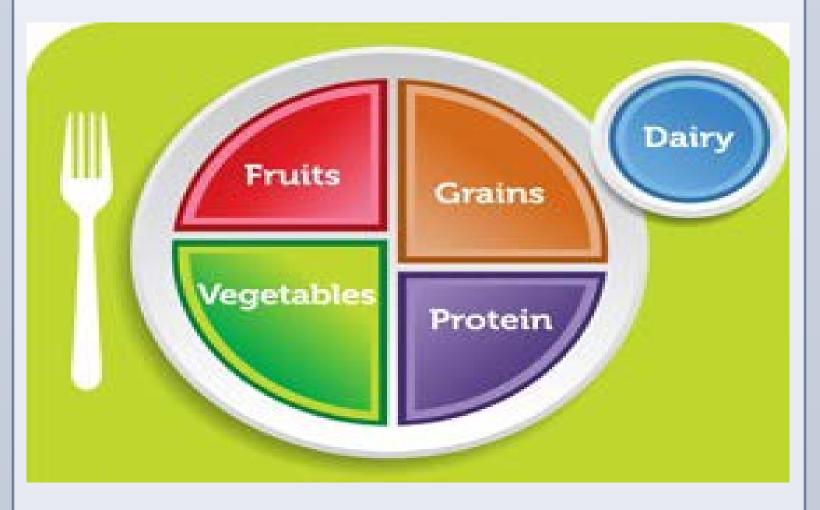
Boys

Dietary diversity score	Frequency	Percent
Lowest dietary diversity (≤3 food groups)	567	59.4
Medium dietary diversity (4–5 food groups)	240	25.2
High dietary diversity (≥6 food groups)	138	14.5
Total	954	100.0

Table 3 Average daily consumption of nutrients (24-h recall) in relation to DRI in girls and boys using T test

Girls

T test**


Items intake/day	Mean N= 49	SE	%DR I	Mean N=56	SE	%DRI	DRI*	Girls	Boys
Calories	1055	69.04	68.68	984.13	54.2	58.37	1686d	15.28	18.15
Protein g	47.65	2.75	308.7	49.3	2.69	319.4	161.03	17.32	18.31
Carbs g	133.26	9.96	102.5	114.68	7.24	88.21	47.73	13.38	15.84
Fiber g	10.37	0.78	48.03	10.13	0.96	46.94	23.95	13.23	10.51
Fat g	37.81	3.48	ND	37.92	2.95	ND	ND	10.86	12.86
Chol mg	251.44	27.3	ND	268.22	23.9	ND	NDa	9.21	11.24
Vit. A μg	733.46	139.1	213.9	478.47	49.4	139.6	94.49	5.27	9.68
Vit. B1 mg	0.63	0.05	115.5	0.55	0.03	99.92	49.98	13.12	16.05
Vit. B2 mg	0.97	0.06	218.3	0.95	0.06	213.6	106.81	15.65	15.1
Vit. B3 mg	8.65	0.76	158.6	10.12	1.14	185.5	93.30	11.39	8.86
Vit. B6 mg	0.78	0.05	175.5	0.79	0.05	176.8	88.44	14.69	16.33
Vit. B12 μg	2.21	0.21	268.4	2.43	0.45	294.5	147.46	10.63	5.44
Vit. C mg	46.2	5.64	246.4	28.89	4.61	154.1	79.34	8.2	6.27
Vit. D μg	1.49	0.19	29.8	1.43	0.23	28.55	14.39	7.81	6.3
Vit. E mg	2.99	0.28	46.27	7.24	4.6	112	58.32	10.76	1.57
Ca mg	472.69	39.29	57.4	447.69	36.6	54.36	45.46	12.03	12.25
Iron mg	7.16	0.41	86.94	9.29	1.95	112.8	57.38	17.58	4.75
Mg mg	140.3	10.32	141.7	132.42	8.48	133.7	71.09	13.6	15.62
P mg	744.05	49.23	155.3	712.03	38.6	148.6	93.59	15.11	18.46
K mg	1372.4	85.86	40.93	1196.75	77.1	35.69	56.40	15.98	15.52
Na mg	1220.7	92.13	111.9	1127.07	87.7	103.3	95.51	13.25	12.85
Zn mg	6.06	0.36	161.6	5.54	0.3	147.8	74.05	16.77	18.28
* A c 10x	V 00 4	oggik	1	hilo oo	10 (11)		0 10114		11 _{* z}

*As low as possible while consuming a nutritionally adequate diet, *DRI: Dietary Reference Intake (DRIs) in bold type; AIs, adequate intakes; ND, not determined; SE, Standard Errors; **Significant at P≤0.05 and P≤0.01.

Conclusion

• Based on the results, unbalanced food consumption can be concluded to lead to malnutrition status, and the presence of stunting, wasting and thinness, is due to lack of essential nutrient intake that is associated with the low dietary diversity.

- overweight and obesity is also related with improper intakes of protein, fat, sugars, and fibers that resulted from limitation of dietary diversity.
- Both types of malnutrition (over and under) in Syrian children in the Kingdom of Saudi Arabia were caused by inadequate and inappropriate eating behaviors and absence of nutritional education in addition to other lifestyle factors, such as low physical activity.
- a nutritional strategy should be established to promote proper health in this population.

REFERENCES

- 1. Frisancho AR: Anthropometric standards for the assessment of growth and nutritional status. Ann Arbor. University of Michigan Press; 1990.
- 2. WHO: Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: World Health Organization; 2006.
- 3. WHO and UNICEF: WHO child growth standards and the identification of severe acute malnutrition in infants and children; 2009.
- 4. Onyango A, et al.: Food diversity versus breastfeeding choice in determining anthropometric status in rural Kenyan toddlers. Int J Epidemiol. 1998; 27:484–489.
- 5. Benefice E, et al.: Nutritional status of Amerindian children from the Beni River (lowland Bolivia) as related to environmental, maternal and dietary factors. Public Health Nutr 2006; 9(3):327–335.

ACKNOWLEDGEMENTS

appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Undergraduate Research Support Program, Project no. (URSP – 3 – 17 – 40)."