

Dental Bleaching Efficacy of Stained Arrested Caries Lesion and their Re-Staining Susceptibility In-Vitro

Deanship of Scientific Research

Sara Eisa¹, Sarah Al-Angari²

1 Dental Student, Collage of Dentistry, King Saud University

2 Assistant Professor, Collage of Dentistry, Department of Dental Restorative Science, King Saud University

P20

Introduction

Aesthetic and conservative management of arrested caries lesions is not well explored in literature. Bleaching has shown promising results as an aesthetic and a non-invasive

1. <u>Bleaching test:</u>

A. At-Home bleaching:

15% carbamide peroxide, $4h/d \times 7$.

B. In-office bleaching:

40% hydrogen peroxide; 20min ×3.

Table 1. Color change (ΔE) means (standard-deviation) after bleaching and staining.

Groups	$\Delta E_{Bleaching+}$		$\Delta E_{\text{Staining}+}$	
G1 (control)	3.2 (1.9)	A/a	3.1 (1.7	A/a
G2 (At-home bleaching)	7.6 (4.1)	A/b	8.0 (3.4)	A/b
G3 (In-office bleaching)	3.7 (2.3)	A/a	7.3 (5.1)	B/b

Clinical significant

The expected results will help clinicians to carefully consider selecting appropriate arrested caries lesions cases as well as the

approach, yet the possibility of re-staining which may affect the bleaching outcome, have not been investigated.

Objective

To investigate (1) the efficacy of two different dental bleaching systems on stained-arrested caries lesions; and (2) to assess the susceptibility of the bleached lesions to staining.

Materials and Methods

Study design:

The experimental units were 60 human teeth with stained arrested caries lesions 2. Staining test:

Specimens were subjected to staining (combination of coffee and tea solution; $8h/d \times 5$), in an incubator at 37°C.

The study outcome was color change (ΔE),

- Uppercase letters indicate significant difference within treatment (row, p<0.05); while lower case among treatments (column, p<0.05). + Δ EBleaching: bleaching-baseline, Δ EStaining: stainingbleaching.

Figure 1. Visual color change for all groups at baseline, after bleaching and after staining.

type of bleaching agent, based on the effectiveness to manage such lesions in a conservative and aesthetic approach.

References

[1] P. Schupbach, F. Lutz, B. Guggenheim, Human root caries: histopathology of arrested lesions, Caries Res 26 (1992) 153-64.

[2] A. Watts, M. Addy, Tooth discolouration and staining: a review of the literature, Br Dent J 190 (2001) 309-16.

[3] C. Gonzalez-Cabezas, The chemistry of caries: remineralization and demineralization events with direct clinical relevance, Dent Clin North Am 54 (2010) 469-78.

[4] S.S. Al-Angari, A.T. Hara, A conservative approach to esthetically treat stained arrested caries lesions, Quintessence Int 47 (2016) 499-504.

[5] C.M. Carey, Tooth whitening: what we now know, J Evid Based Dent Pract 14 Suppl (2014)

(pit and fissure surface) embedded in

acrylic blocks (n= 20 per treatment group).

Baseline color was measured

spectrophometrically.

Then, specimens were randomized into 3 groups (n=20) based on the bleaching

measured spectrophometrically at 3 time points:

Baseline, after bleaching and after staining.

Statistical analysis:

Data were analyzed using ANOVA models followed by Dunnett T3 tests (α=0.05).

Results

Color:

At-home bleaching protocol significantly (p<0.001) improved the color lightness (ΔE 7.6) of stained arrested caries lesions, compared to in-office bleaching protocol

70-6.

[6] F. Lippert, R.J. Lynch, G.J. Eckert, S.A. Kelly, A.T. Hara, D.T. Zero, In situ fluoride response of caries lesions with different mineral distributions at baseline, Caries Res 45 (2011) 47-55.

[7] N.V. Penumatsa, R.R. Kaminedi, K. Baroudi, O. Barakath, Evaluation of remineralization capacity of casein phosphopeptide-amorphous calcium phosphate on the carbamide peroxide treated enamel, J Pharm Bioallied Sci 7 (2015) S583-6.

[8] S.S. Al-Angari, F. Lippert, J.A. Platt, G.J. Eckert, C. Gonzalez-Cabezas, Y. Li, A.T. Hara, Bleaching of simulated stained-remineralized caries lesions in vitro, Clin Oral Investig (2018).

[9] S.S. Al-Angari, F. Lippert, J.A. Platt, G.J. Eckert, C. Gonzalez-Cabezas, Y. Li, A.T. Hara, Dental bleaching efficacy and impact on demineralization susceptibility of simulated stained-remineralized caries lesions, Journal of dentistry (2018).

G3: G2: G1: Simulated Simulated No in-office at-home bleaching bleaching bleaching (negative control)

(ΔE 3.2) and control (ΔE 3.7).

Re-staining susceptibility:

After staining, both at-home ($\Delta E 8$) and inoffice bleaching groups (ΔE 7.3) produced a significant ($p \le 0.009$) increase in stains absorption (darker) compared to the control group (ΔE 3.1), indicating more

surface stain deposition.

Conclusion

At-home bleaching protocol was significantly more efficient in color improvement (lighter color) compared to in-office bleaching protocol when treating stained arrested caries lesion; however, both bleaching protocols resulted in higher surface stain absorption.

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Undergraduate Research Support Program, Project no. (URSP - 3 - 17 - 32)."