Introduction:
Polyetheretherketone (PEEK) is a high-temperature polymer of the family of polyetherketone. It is a semicrystalline thermoplastic consisting of an aromatic backbone molecular chain, interconnected by ketone and ether functional groups. The ease of its use, preparation and behavior as a physiologically inert material promotes its applications in various medical devices specially in orthopedics because of its excellent chemical, mechanical, and thermal properties. Its high strength in combination with adequate milling and grinding properties. (Staszyk et al., 2015, Tosi et al., 2015). Applications of PEEK in dentistry, its used for interim abutments, implant-supported bars, clamp material, dental implants and obturators (Najeeb et al., 2016). PEEK is unsuitable for the fabrication of full counter monolithic esthetic dental restorations they have an opaque color. Thus, To meet a satisfactory esthetics; veneering is required. Essentially, through establishing a durable bonding to ensure an adequate functional outcome and long-term stability.

Objective
The purpose of this study is to evaluate the shear bond strength of PEEK copings that is surface treated and veneered with different materials and in different in both artificial aging and non-aging conditions.

Materials and Methods:
90 PEEK copings were surface treated with five surface treatments; (A) No treatment (B) Sandblasting with alumina; mean particle size of 50 μm (C) Sandblasting with alumina; mean particle size of 110 μm (D) Acid-etching with sulfuric acid (98%) figure 1. (E) Acid-etching with sulfuric acid (98%) with silane coupling agent. Followed with ceramic veneering using the layering technique with low fusing disilicate ceramic ingot and leucite glass-temperature feldspathic porcelain, lithium agent. Followed with ceramic veneering using ceramic ingot. Both PEEK and ceramic disks with sulfuric acid (98%) with silane coupling treatments were applied to increase the surface roughness and bonding area (Schmidlin et al., 2010). Surface roughness was shown to enhance the adhesive techniques and therefore different surface treatments were applied to increase the surface roughness and bonding area (Rosentritt et al., 2015). Schmidtlin et al. found that the highest bond strength value out different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater, 16, 559-59.

Results
PEEK group treated with acid-etching (98% sulfuric acid and Monobond) and bonded with lithium disilicate ceramic ingot in non-aged condition had the highest mean shear bond strength and showed a significant difference compared with the control group “No treatment” when bonded to all types of ceramics (10.03 ± 0.86 MPa). Also, the PEEK disks treated with Acid-etching 98% sulfuric acid with silane coupling agent showed a significant difference compared with the control group “No treatment” when bonded to all types of ceramics. In non-aged group: PEEK treated with Acid-etching 98% sulfuric acid with silane coupling agent showed a higher SBS compared with the group of Acid-etching 98% sulfuric acid when bonded to all types of ceramics. However, E-max Ingot was the only ceramic type that had no significant difference in aged group.

Difference in SBS between the acid-etched groups with 98% sulfuric acid with and without the addition of monobond veneered with different ceramic materials after artificial aging. Acid-etching with 98% sulfuric acid Acid-etching with 98% sulfuric acid with monobond

Figure 1. Sandblasting the PEEK disks with alumina; mean particle size of 50 μm and 110 μm.

Figure 2. The final apparatus of the sample ready for artificial aging and testing.

Figure 3. Specimens were loaded compressively in a universal testing machine (Instron). The load was applied with a cross-head speed of 2mm/ min.

Discussion
The effective bonding to PEEK is a prerequisite for its use in dentistry as a prosthetic material. After the shear test in the present study, veneering ceramic were separated from the PEEK surface for every specimen group. Thus, it could be observed that the bond strength between PEEK and the veneering ceramic was weaker than the cohesive strength of the veneering ceramic. As PEEK being an inert material with high chemical resistance and low surface energy, bonding can’t be achieved on its polished untreated surface (Schmidlin et al., 2016). Surface roughness was shown to enhance the adhesive techniques and therefore different surface treatments were applied to increase the surface roughness and bonding area (Rosentritt et al., 2015). Schmidtlin et al. found that the highest bond strength value out different surface treatments when the PEEK was chemically pre-treated with 98% sulfuric acid. A SBS value of 19.0 ± 3.4 MPa for RelyX Unicem was measured. Current study elicits similar results, as the highest bond strength value was found in PEEK specimens that were treated with 98% sulfuric acid with monobond. Previous study on SBS between PEEK and resin cement reported that the bond strengths of untreated specimens were not tested, because it was not possible to obtain adequate bond strength between PEEK and resin cement and with an untreated surface. (Zhou et al., 2014, Hallmann L et al., 2012, Sproesser et al., 2014).

However, in this study the untreated specimens were tested with the highest SBS value was 5.11±0.38 MPa when veneered with empress ceramic and the lowest value was 2.09±0.17 MPa when veneered with E-max ceramic, a significant difference was found between in SBS of different ceramics.

Conclusion
Within the limitations of this study, it can be concluded that 98% sulfuric acid with Monobond as a lone coupling treatments improved the bond strength of PEEK with resin cement RelyXUnicem. Therefore, the null hypothesis was rejected. Comparing the pooled data of the three different veneering ceramics, IPS E-Max Press Ingot seemed suitable to bond to PEEK material. However, the use of 98% sulfuric acid is not clinically viable for the corrosive, noxious and considered toxic for dental office use. Thus, Bonding of Porcelain to PEEK is not applicable and may affect surface treatments of PEEK and favorable adhesives may be explored in future experimental studies.

References:

Acknowledgment
The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Undergraduate Research Support Program, Project no. (USRP – 3 – 17).