

The effect of sodium fluoride administration on hydroxyproline concentration in rat kidneys

Contents

> Introduction a) Kidneys **b**)Nephrons c) Hydroxyproline d)NaF Materials and Methods **Results** Conclusion

Kidneys

- Kidneys are paired, bean-shaped organs situated in a retroperitoneal position on the posterior aspect of the abdominal cavity, on either side of the vertebral column.
- The kidney is covered by a fibrous capsule. The outer zone of the kidney is the renal cortex which contains the glomeruli and the inner zone is the medulla.

Nephron

The nephron is the structural and functional unit of the kidney.

Each kidney contains 30,000 to 35,000 nephrons in the rats and about 1 million in humans .

Each nephron is made up of a renal corpuscle (glomerulus) and a complex tubular portion, which drains into a unifying tubular system called the collecting duct system.

Hydroxyproline (Hyp)

- Hydroxyproline is a modified amino acid that is derived from proline by post-translation hydroxylation occuring within the peptide chain in biosynthesis of collagen.
- The occurrence of this amino acid is thought to be confined exclusively to collagen, where it is present in the Y position of the Gly-X-Y repeating tripeptide.

Forms of Hydroxyproline in the Tissues

- Free Hydroxyproline.
 Dentide hound Uudrouwne
- 2. Peptide- bound Hydroxyproline.
- 3. Protein- bound Hydroxyproline.
- 4. Soluble collagen hydroxyproline and insoluble collagen hydroxyproline

Breakdown or remodeling of collagen occurs normally in tissues in response to growth or injury. However, during rapid growth and in disease states, the extent of collagen degradation is extensive.

Collagen content in tissue is determined by measuring its hydroxyproline content

Hydroxyproline from collagen degradation

10% excreted in urine

90% oxidized in liver to CO_2 and urea

Fluoride

Fluoride is taken mainly in drinking water beside various nutrition products and beverages like tea, drugs, fluoride containing salt

Fluoride has both beneficial and detrimental effects on human health, with a narrow range between the intakes associated with its beneficial and adverse health effects.

Aim

To study the effect of sodium fluoride administration on hydroxyproline/collagen concentration in rat kidneys

To study the reported protective effect of magnesium chloride on sodium fluoride induced changes in rat kidney hydroxyproline/collagen.

Materials and Methods

Kidneys removed and Homogenized

All the rats were sacrificed 24 hours after the treatment.
 Kidneys were taken from rats, washed in buffered saline, frozen immediately in liquid nitrogen and stored at -80°C until processed.

Tissues were homogenized in normal saline (0.85% NaCl). The homogenate was used to determine the free, peptide and proteinbound Hyp.

Tissues were homogenized in 0.45% NaCl to determine the soluble and insoluble collagen Hyp.

Determination of Free, Peptide-bound and Protein-bound Hyp

Standard graph

225

200

5n

100

Standard graph of hydroxyproline

Effect of different doses of NaF on kidney hydroxyproline/collagen in rats*.

* Al-Omireeni EA, Siddiqi NJ, Alhomida AS. Effect of different doses of sodium fluoride on various hydroxyproline fractions in rat kidneys. Kidney Research Journal, http://scialert.net/abstract/?doi=krj.0000.13409.13409. ISSN 1819-3374, (2009).

200

Effect of different doses of NaF on survival in rats

Serial	Dose of	Number of	Number of	Percentage
number	NaF mg/kg	rats	rats	survival
	body	injected	Survived	
d l d	weight	with NaF		
1	Control	12	12	100
2	Placebo	12	12	100
3	5	12	12	100
4	10	6	6	100
5	20	6	6	100
6	30	15	10	(67)
7	40	15	4	27

Effect of NaF treatment on body weight, kidney weight and kidney protein in rats

Serial number	Experimental Groups (NaF treated)	Body Weight (grams)	Kidney Weight (grams)	Kidney protein (mg/gm fresh tissue)
1	Control	228.3 ± 3.20	1.20 ± 0.16	167.3 ± 37.96
2	Placebo	235.2 ± 7.55 ns	$1.15\pm0.12^{\text{ns}}$	154.4 ± 43.56^{ns}
3	5 mg/kg	231.8 ± 15.35 ns	1.14 ± 0.14^{ns}	74.33 ± 8.98***
4	10 mg/kg	183.8 ± 16.92 ***	$1.09\pm0.17~^{\text{ns}}$	$113.7 \pm 22.64^*$
5	20 mg/kg	$250.0 \pm 0.00^{**}$	1.04 ± 0.04^{ns}	159.9 ± 15.61*
6	30 mg/kg	270.0 ± 0.00***	1.06 ± 0.1 ns	59.33 ± 6.64***

Effect of NaF treatment on organosomatic index in rat kidney

Serial number	Dose of NaF (mg/kg body weight)	Organ somatic index
1	Control	0.58 ± 0.08
2	Placebo	$0.61\pm0.05^{\mathrm{ns}}$
3	5	$0.50\pm0.07^{\rm ns}$
4	10	$0.60 \pm 0.07^{\rm ns}$
5	20	$0.41 \pm 0.02^{***}$
6	30	$0.40 \pm 0.04^{***}$

Effect of NaF treatment on serum biochemical parameters in rats

Biochemica	Control	Placebo	5 mg/kg	10 mg/kg	20 mg/kg	30 mg/kg
1			body weight	body weight	body	body weight
Parameters					weight	
Urea						
(mg/dl)	33.5 ± 3.12	$34.50 \pm 3.32^{\text{ns}}$	$40.75 \pm 4.92^{\rm ns}$	$62.0 \pm 9.31^{***}$	$57.0 \pm 8.83^{***}$	$30.50 \pm 4.44^*$
BUN				\frown		
(mg/dl)	17.75 ± 3.30	17.25 ± 2.22 ns	$19.75 \pm 2.36^{\mathrm{ns}}$	$17.25 \pm 1.5^*$	$30.00 \pm 6.05^{**}$	23.75 ± 6.19 ns
Creatinine			\frown			
(mg/dl)	0.37 ± 0.07	0.40 ± 0.06 ns	$0.55 \pm 0.05^*$	0.36 ± 0.06 ns	0.51 ± 0.03 ns	0.47 ± 0.09 ns
Uric acid						
(mg/dl)	1.33 ± 0.21	1.28 ± 0.52 ns	1.40 ± 0.27 ns	1.63 ± 0.15 ns	0.70 ± 0.14 ns	1.50 ± 0.52 ns
Albumin						
(g/dl)	3.56 ± 0.45	3.71 ± 0.33 ns	$3.54 \pm 4.50^{\mathrm{ns}}$	3.95 ± 0.17 ns	3.10 ± 0.34 ns	2.66 ± 0.21 ns
Protein				\frown		\frown
(g/dl)	6.20 ± 0.45	6.44 ± 0.43 ns	7.35 ± 0.38^{ns}	$7.63 \pm 0.60^*$	5.55 ± 0.77 ns	$5.02 \pm 0.59^{*}$

Effect of NaF treatment on serum electrolytes concentration in rats

Serum	Control	Placebo	5 mg/kg	10 mg/kg	20 mg/kg	30 mg/kg
Electrolytes			body	body	body	body
			weight	weight	weight	weight
Sodium	143.8 ± 4.35	$144.5 \pm 6.46^{\mathrm{ns}}$	148.8 ± 6.5 ns	142.8 ± 3.1 ns	139.5 ± 2.52 ns	136.0 ± 4.24
(mEq/I)						
Potassium	5.58 ± 0.96	6.50 ± 3.48 ns	6.20 ± 0.51 ns	$11.75 \pm 0.87^{***}$	4.63 ± 0.17 ns	$4.68 \pm 0.50^{\mathrm{ns}}$
(mEq/I)				<u> </u>	\frown	
Calcium	12.34 ± 0.66	12.82 ± 0.23 ns	12.75 ± 1.20 ns	11.99 ± 0.25 ns	$9.49 \pm 0.13^{***}$	$8.55 \pm 0.19^{**}$
(mg/dl)						
Magnesim	2.45 ± 0.04	2.54 ± 0.32 ns	$3.21 \pm 0.47^{*}$	2.44 ± 0.22 ns	$2.44 \pm 0.12^{\text{ ns}}$	2.34 ± 0.45 ns
(mg/dl)						(
Phosphorous	10.24 ± 1.64	10.24 ± 2.23 ns	12.42 ± 2.43 ns	10.80 ± 0.86^{ns}	$6.42 \pm 0.61^*$	$6.79 \pm 0.94^{**}$
(mg/dl)						

Effect of NaF treatment on serum alkaline phosphatase in rats

Effect of NaF treatment on different hydroxyproline fractions in rat kidneys

Experimental Groups (NaF treated)	Free Hyp (µg/gm fresh tissue)	Peptide- bound Hyp (mg/gm fresh tissue)	Protein-bound Hyp (mg/gm fresh tissue)	Total Hyp (mg/gm fresh tissue)
Control	329.3 ± 54.65	11.12 ± 0.92	1.048 ± 0.15	12.32 ± 2.76
Placebo	276.8 ± 24.66^{ns}	5.92 ± 3.2*	1.22 ± 0.37 ns	$6.86 \pm 0.59 **$
5mg/kg body weight	283.5 ± 50.7 ns	8.91 ± 2.9 ns	2.76 ±0.40***	11.76± 3.07 ^{ns}
10 mg/kg body weight	125.3±15.94***	1.61±0. ** *	1.26 ± 0.23 ns	2.93 ±0.75***
20 mg/kg body weight	245.5 ± 40 5*	1.89 ± 0.41**	1.49 ± 0.21 ns	2.98 ±0.6
30 mg/kg body weight	333.2 ± 49.5 ns	1.30 ± 0.25**	1.308 ± 0.29 ns	2.62 ±0.49***

Effect of NaF on soluble collagen hydroxyproline in rat kidneys

Effect of NaF on insoluble collagen hydroxyproline in rat kidneys

Effect of NaF on total collagen hydroxyproline in rat kidneys

Electron micrograph of kidney from control animal

200

Control

Electron micrograph of kidney collagen in rats injected with 5,10,20 and 30 mg/kg body weight of NaF*

* Accepted for publication / E.A Alomireeni, N.J.Siddiqi, A.S.Alhomida. Biochemical and histological stuides on the effect of NaF on rat kidney. Saudi Chemical Society (2010).

Effect of MgCl₂ on NaF induced changes in renal hydroxyproline/collagen in rats*

* E.A. AlOmireeni, N.J. Siddiqi, A.S. Alhomida. Effect of magnesium chloride and sodium fluoride on various hydroxyproline fractions in rat kidneys. Canadian Journal of Pure and Applied Sciences, 4(2) ISSN 1715-9997, (2010).

Effect of MgCl₂ and NaF treatment on body weight, kidney weight and protein content in rats

Experiment al groups	Body weight (grams)	Kidney weight (grams)	Kidney protein (mg/gram tissue)
Control	228.33 ± 3.20	1.07 ± 0.97	150.1 ± 37.5
MgCl ₂	200.83 ± 13.67**	$0.97\pm0.10^{\text{ns}}$	45.61 ± 2.04***
NaF	183.83 ± 16.91***	$1.09\pm0.17~^{\rm ns}$	113.7 ± 22.64*
$MgCl_2 + NaF$	178.83 ± 7.78***	0.76 ± 0.06 ns	54.93 ± 2.88***

Effect of MgCl₂ and NaF treatment on organosomatic index in rat kidney

Serial number	Groups	Organ somatic index
1 2	Control NaF	0.58 ± 0.72 $0.62 \pm 0.11^{\text{ns}}$
3	$MgCl_2$	$0.49 \pm 0.04^{\text{ns}}$ $0.41 \pm 0.05^{\text{ns}}$
		0.71 - 0.05
H		

Effect of MgCl₂ and NaF treatment on serum biochemical parameters in rats

Biochemical Parameters	Control	MgCl ₂	NaF	MgCl ₂ + NaF
Urea (mg/dl)	33.5 ± 3.12	42.50 ± 4.80^{ns}	62.0 ± 9.31 ***	48.75 ± 4.85*
BUN(mg/dl)	17.75 ± 3.30	22.75 ± 2.75^{ns}	$17.25\pm1.5^{\rm ns}$	22.75 ± 2.22^{ns}
Creatinine (mg/dl)	0.37 ± 0.07	0.47 ± 0.02^{ns}	0.36 ± 0.06^{ns}	0.46 ± 0.03^{ns}
Uric acid (mg/dl)	1.33 ± 0.21	$0.85 \pm 0.13^{*}$	1.63 ± 0.15 ns	1.5 ± 0.29^{ns}
Albumin(g/dl)	3.56 ± 0.45	3.94 ± 0.28^{ns}	$3.97\pm0.15^{\text{ ns}}$	4.32 ± 0.1 (*
Protein(g/dl)	6.20 ± 0.45	7.62 ±0.22***	$7.63 \pm 0.60^{***}$	7.28 ± 0.2§**

Effect of MgCl₂ and NaF treatment on serum electrolytes concentration in rats

Serum Electrolytes	Control	MgCl ₂	NaF	MgCl2 + NaF
Sodium	142.6 ± 4.56	138.8 ± 3.77^{ns}	$142.8\pm3.0^{\mathrm{ns}}$	$132.2 \pm 2.95 $ **
(mEq/I)			\bigcirc	\bigcirc
Potassium	$5.58\pm\ 0.96$	5.6 ± 0.36^{ns}	11.75 ± 0.8	$5.85\pm0.35{}^{ns}$
(mEq/I)		\bigcirc	Ŭ	\frown
Calcium	12.34 ± 0.66	10.81±0.12**	$11.99\pm0.25^{\mathrm{ns}}$	10.78 ± 0.45 **
(mg/dl)		Ŭ		\sim
Magnesium	2.45 ± 0.05	2.37 ± 0.14^{ns}	2.44 ± 0.22^{ns}	$3.05 \pm 0.20(**)$
(mg/dl)				\smile
Phosphorous	10.24 ± 1.64	8.78 ± 0.31^{ns}	10.80 ± 0.86^{ns}	11.36 ± 0.60^{ns}
(mg/dl)				

Effect of MgCl₂ and NaF on alkaline phosphatase in rat serum

Effect of MgCl₂ and NaF treatment on various hydroxyproline fractions in rat kidneys

Experimenta l Groups	Free Hyp (µg/gm fresh tissue)	Protein- bound Hydroxyproli ne (mg/gm fresh tissue)	Peptide – bound Hydroxyprolin e (mg/gm fresh tissue)	Total Hydroxyprolin e (mg/gm fresh tissue)
Control	329.3 ± 54.65	1.04 ± 0.15	11.29 ± 0.88	12.67 ± 0.96
MgCl ₂	$149.6 \pm 22.77 * * *$	$1.73 \pm 0.17^{***}$	$1.99 \pm 0.47 ***$	$3.87 \pm 0.48 ***$
NaF	$125.3 \pm 15.94 * * *$	1.26 ± 0.23^{ns}	$1.61 \pm 0.91 ***$	$3.44 \pm 0.79 ***$
MgCl ₂ +NaF	$218.1 \pm 11.16 * * *$	$2.41 \pm 0.33^{***}$	$6.67 \pm 1.23 ***$	$9.19 \pm 1.21 ***$

Effect of MgCl₂ and NaF on soluble collagen hydroxyproline in rat kidneys

Effect of MgCl₂ and NaF on insoluble collagen hydroxyproline in rat kidneys

Effect of MgCl₂ and NaF on total collagen hydroxyproline in rat kidneys

Electron micrograph of kidneys from rats treated with 30 mg/kg body weight of MgCl₂ alone and followed by NaF 10mg/kg body weight /24 hours, 30 minutes after MgCl₂ injection*

*Accepted for publication /E.A Alomireeni, N.J. Siddiqi, A.S. Alhomida. Biochemical and histological stuides on the effect of NaF on rat kidney. Saudi Chemical Society (2010).

30mg/kg body weight MgCl₂

30mg/kg body weight MgCl₂ Followed by NaF 10mg/kg body weight, 30minutes after MgCl₂ injection

Statistical Analysis

The hydroxyproline content was expressed as mean ± SD µg/gram fresh tissue. Hydroxyproline levels in various groups were compared using one-way ANOVA analysis followed Tukey's multiple comparision test.

Conclusion

Though MgCl₂ has been reported to be protective against the toxic effect of NaF it had no significant effect on NaF induced changes in kidney hydroxyproline content.

Pretreatment of rats with MgCl₂ however restored insoluble collagen hydroxyproline to near normal levels though it had no significant effect on soluble collagen hydroxyproline.

Acknowledgements

- All thanks are to almighty Allah (SAT) who guided and enabled me to pursue and accomplish this work.
- In grateful to my supervisor Dr. Nikhat J. Siddiqi for her encouragement and supervision throughout the study and my co supervisor Dr. Abdullah S. Alhomida for his guidance and help.
- Thanks are due to all the faculty and staff of Biochemistry Department for their cooperation.
- Thanks are also due to Central for the technical support. My grateful appreciation to Dr. Jehan Sorour, Prof of Cytology and Histology, Um Al-Qura University, Makkah for interpration of electron microscopy results.
- I would like to thank the Research Center and King Abdulaziz City for Science and Technology for the financial support.
- Finally I am particularly grateful to my parents and my in-laws for their support and my husband for his support and encouragement.

Thank you for

attention