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The   prediction  of future  observations  of order  

statistics has  many  applications  in the  applied  

studies  such  as,  the  biological studies,  life testing  

and  quality  control problems.  Prediction  problems 

come up naturally  in several real life situations
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for example,  the  prediction  of rain  fall extremes,  highest  water  level of the  seas and 

temperatures.  Also, some other  applications  involving weather,  sport  data  and  in economics.

Many distributions have been used in prediction  problems, Abd Ellah and Sultan (2005) have              

considered some predictive intervals  for the future observations  from the exponential  distribution   

by using the  Bayesian  approach  in both  fixed sample  size (FSS)  and  random  sample  size           

(RSS). Adopting  Bayesian  approach,   Lingappaiah (1986) has  predicted  the  range  in a future        

sample  when  sample  size is a random variable  based  on ranges  in earlier  samples  using  the      

same  line  as in Lingappiah (1978).  Evans  and Nigm (1980) have discussed the  prediction  intervals 

for Weibull distribution, Raqab (2001) has discussed optimal perdition  of new observation  based on 

the  generalized  order  statistics.    Calabria  and  Pulicini (1994)  have  considered prediction  from 

the inverse Weibull distribution.  Balakrishnan and Lin (2005) have discussed exact inference and     

prediction for K -sample exponential  case under type-II censoring.

The modified maximum likelihood predictors of future order statistics from normal samples have       

been discussed by Raqab (1997).
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Soliman (2000) has illustrated that the  prediction  of future  order  observations  and  has  shown  how 

long a  sample  of units  might  run  until  all fail in life testing.   He has used Pareto  distribution  where 

the first i ordered observations  have been observed.  AL-Hussaini and Jaheen  (1996) have predicted     

Bayesian  bounds  for the Burr  Type XII distribution in the presence of outliers,  Al-Hussaini (2003) has 

derived the necessary Bayesian predictive density function to obtain the bounds of the predictive          

intervals of future order statistics.  He has applied his approach when the underlying population  is a      

finite mixture of general components.  Such components  include, among others,  the Weibull                

(exponential  and Rayleigh as special cases), three-parameter Burr  type  XII, Pareto,  beta,  Gompertz   

and  compound  Gompertz  distributions.   Raqab  and  Madi  (2002) have  considered Bayesian                

prediction of the total time on test by using doubly censored Rayleigh data.
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Let

and Xi+1:n ≤ Xi+2:n ≤ . . . ≤ Xn:n  be the remaining  (n − i) order statistics from the

X1:n ≤ X2:n ≤ . . . ≤ Xi:n be the  first  i order  statistics from the  uniform

distribution with pdf

 :same distribution, the joint pdf of X i:n and X j:n is given by

(1.2)

fi,j:n(x, y) = Ci,j:n [F (x)]i−1 [F (y) − F (x)]j−i−1[1 − F (y)]n−j f (x)f (y),

−∞ < x < y < ∞,
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where f (.) and F (.) are respectively, the pdf and cdf of the uniform distribution given

in (1.1) and 

In the  case of FSS, the  Bayes   predictive  density  function  of 

11, i + 2, . 11 ,  i +2 , .. , n 

for given   X = (X1:n, X2:n , . . . Xi:n )    can be written as ,
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where f (y | .) is the conditional  pdf of the future  observation  y and Π(θ | X ) is the

posterior pdf.

In the case of RSS, the predictive distribution function of y when the sample size

n is a random  variable is given by [see Gupta  and Gupta  (1984)].

where r(n)  is the probability  mass function (pmf ) of n and h(y | X ) is given in (1.4).

Sultan  and  Abd Ellah  (2006) have used (1.5) to predict  the  future  order  statistics

from the exponential  distribution.
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2- Prediction for  Fixed sample size    

In this section, we use (1.4) to derive the predictive distribution function of the future

order statistics from the uniform distribution based on the following statistic

Obtaining  the posterior distribution requires the likelihood function. In our case,

to predict  the j-th order statistic (i ≤ j ≤ n), the likelihood function is
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Theorem (1)  :  

where Ci,j :n is givenin(1.3).
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Lemma(1) :

The corresponding cdf of the predictive pdf in Theorem (1)is  

given by
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3  Random Samples

In this section, derive the Bayesian predictive distribution of W assuming the random

sample size which is binomially distributed with parameter M and p, n ∼ B (n; M, p).

Theorem 2

Let X1:n, ≤ . . . ≤ Xi:n           be the  first i order  statistics from the  uniform dis-

tribution and assume that  the sample size n is a random  variable  and is binomially

distributed as with pmf

Considering the prior

and using the predictive density function in (1.5), replacing r(n)  by B (n; M, p) given 

in(3.1),   then  the predictive density function of W  is given by
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Lemma(2):

   :The corresponding cdf of  the pdf inTheorem(2)is given by

(3.4)
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4   Simulation Results

In this section, we carry out some simulation results to illustrate  the usefulness of 

the  theoretical  results obtained  in Sections (2) and (3).

4 .1 Simulation based on  fixed sample size

For  the  fixed sample  size case, we calculate  the  Bayesian  percentage  points  of the 

upper bound  of the future order statistics as follows:
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Algorithm (1):



Table(1):The upper percentage point of  W based on Bayeian approach
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In this example, we generate 7 order statistics from U (0, θ) when n = 10 as follows:

0.072, 0.140, 0.162, 0.192, 0.234, 0.366, 0.466.

To predict,  for example, the 90% upper bound of the 9-th order statistic by using the

7-th order statistics,  we have

U9:10 = U7:10 + W = 0.466 + 0.2512 = 0.7172.

Similarly, for some different values of α and i.

In order to examine the efficiency of our technique, the probability  coverage of the 

predictive confidence intervals  can be calculated  through  Algorithm (2) below:
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1.  Generate  n order statistics from U (0, θ).

2. Predict  the  j-th order statistic  Uj:n in view of                    

example (1)   as       Uj:n = W + Ui:n ,  i < j,

where W  is the percentage  point given in Table (1).

3 . If the simulated  value of j-th ordered statistic is less        

than  the predicted  value  

Uj:n , then  ic = ic + 1, ic = 0 at the initial step. 
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4 .   Go to step 1

5 .   Repeat  steps 1, 2, 3 and 4 up to 10000 runs.

.
ic

=  probability  coverageThe.   6 10000

Algorithm  (2) is applied  for different  values  of α  and  n

and  the  numerical  results  are  given in Table (2).
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Table(2):Probability coverage of upper bound of W based on Bayeian approach
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Form Table (2), we see that

1 . The probability  coverage values are quite close to the corresponding   confidence

levels for the cases 90%, 95%, 97.5% and 99%.

2 . For almost  all cases in the  table,  the  probability  coverage increases when     

the confidence level increases for any pair (i, j).

4  2.Simulation based on  random sample size
In  this  section,  we calculate  the  Bayesian  percentage  point  of W  when  n  follows

Binomial(n; M, p).  The  routine  DZREAL  from the  IMSL was used for solving the nonlinear 

equation  GW (w) = 1 − α, where G(w) is given in (3.4) when n distributed B(n; M, p). 

Table (3) displays the Bayesian upper bound of the future order statistics from U (0, θ) when n 

follows binomial distribution.
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Table  (3):  The upper  percentage  point of statistic   W when n is B (n ; p, M )

24



25



In order   to examine the efficiency of our technique 

when the sample size is random  variable,  the  

probability  coverage values  of the  predictive  

confidence intervals are calculated when n is 

binomially distributed based on 10, 000 simulations 

in Table (4). 
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To show the usefulness of the Bayesian percentage point when n  follows the bino-

mial distribution, we generate the value of n  from the binomial generator  B(n; 10,    

0.3) to get n = 10.  Next,  we generate  6 order  statistics when n = 10 from U (0, θ) as:

0.0721, 0.1401, 0.1619, 0.1917, 0.2339, 0.3656.

By using the 6-th order statistic, we predict the Bayesian upper bound of the 7-th 

order statistic.  Referring to Table  (3) when p = 0.3, M  = 10, n = 10, we have the

90% predictive upper bound of the 7-th order statistic is U7:10 = U6:10 + W = 0.3656  +

0.14888 = 0.51448. and the 95% upper bound is 

X
7:10 

= 0.3656 + 0.18925 = 0.55485.

Similarly, we can predict  the 8-th, 9-th and 10-th order statistics.
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Table  (4):  The probability coverage
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4  3. Applications

The  following data  given by Proschan (1963) that are  the  times  between  successive failure  air

conditioning equipment  in a Boeing 720 airplane,  arranged in increasing  order  of magnitude. 

The first nine of the data  points  are:  12, 21, 26, 29, 29, 48, 57, 59, 70. Upon using the percentage  

points  of Statistic in section  (2.2),  we predict  the  90% upper  bounds  for the  10-th  

observation based  on the first 9 order observations. First,  we calculate  the maximum  likelihood 

estimate  of λ as:

Then  U
9:10  

= 0.776073 and from Table  (3), we have U
10:10  

= 0.776073 + 0.14020 = 0.916273. Hence,

the  90% predictive  upper  bound  of the  10-th  order  statistic from  the  exponential distribution 

is given by: 
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1.  We notice  from the  results  that as we increase  the  value  of i for a given value  of j 

and  a given confidence level, we get better (sharper) upper  bounds  which is expected 

since when we increase i more information is obtained.

2.  We also notice that for a fixed pair  (i, j), the  upper  bounds  of W  increase as the   

confidence level increases.

30

Remark:



Abd Ellah,  A.H, Sultan,  K.S. (2005).  Exact  Bayesian  prediction  of exponential lifetime based  on random  sample sizes, 

Quality  Technology& Quantitative Management, 2, 2, 161-175.

Al-Hussaini,  E.K.  and  Jaheen,   Z.F.(1996).    Bayesian  prediction  bounds  for the  Burr  type  X11 distribution in the  

presence  of outliers,       Journal  of Statistical  Planning  and  Inference,   55, 23-37.

Al-Hussaini,  E.K.  (2003). Bayesian  predictive  density  of order  statistics based  on finite mixture models.  Journal  of 

Statistical  Planning  and            Inference,  113, 15-24.

Balakrishnan, N. and  Lin, C.T. (2005).  Exact  inference and  prediction  for K-sample  exponential case under  type-II 

censoring,  Journal  of     Statistical  Computation and Simulation, 75,  5, 315 331.

Calabria, R. and Pulcini  G. (1994).  Bayes two sample prediction  for the inverse Weibull  distribu- tion,  Communications in 

Statistics - Theory  and   Methods,  23, 1811-1824.

Evans,  I.G.  and  Nigm,  A.M.  (1980).  Bayesian  Prediction for Two-Parameter Weibull  Lifetime

Models.  Communications in Statistics - Theory  and Methods,  9(6), 649-658.

Gupta, D. and  Gupta, R. C. (1984).  On the  distribution of order  statistics for a random  sample size, Statistica  Neerlanddica,  

38, 13-19.

Lingappaiah, G.S. (1986).Bayes  prediction  in exponential life-testing  when sample size is a random variable,  IEEE  

Transaction on Reliability,  R-35, 1, 106-110.

Sultan, K. S. and Alshami, S.A. (2010). Prediction of future order statistics from the uniform distribution,  

Advances in Intelligent and Soft Computing, 77, 593 – 602.

31

REFERENCES



THANK 

YOU

32


