# An Introduction to R-Programming

#### Hadeel Alkofide, Msc, PhD

NOT a biostatistician or R expert just simply an R user

Some slides were adapted from lectures by Angie Mae Rodday MSc, PhD at Tufts University



- Open source programming language and software environment for statistical computing and graphics
- R is an implementation of the S programming language
- S was created by John Chambers while at Bell Labs
- R was created by Ross Ihaka and Robert Gentleman
- R is named partly after the first names of the first two R authors and partly as a play on the name of S

#### Why Use R?

- FREE and Open Source
- Strong user Community
- Highly extensible, flexible
- Implementation of high end statistical methods
- Flexible graphics and intelligent defaults
- Runs on Windows, Mac OS, and Linux/UNIX platforms

#### Then, why is not everyone using R???

- Difficult, but NOT FOR YOU  $\textcircled{\sc op}$
- Command- (not menu-) driven.
- No commercial support, means you need to look for solutions your self, which can be very frustrating
- Easy to make mistakes and not know
- Data prep and cleaning can be messier and more mistake prone in R vs. SPSS or SAS

### Survey Asking Researched their Primary Data Analysis Tool?



https://r4stats.wordpress.com/articles/popularity/

# Let us start learning R



### Learning R... Piece of cake



#### Downloading R

https://cran.r-project.org/

#### The R Environment- R Command Window



0

PE

R

5

w

6

e

[]]

#### The R Environment- R Command Window

- R command window (console) or Graphical User Interface (GUI)
- Used for entering commands, data manipulations, analyses, graphing
- Output: results of analyses, queries, etc. are written here
- Toggle through previous commands by using the up and down arrow keys

#### The R Environment- R Command Window



#### The R Environment- R Workspace

- Current working environment
- Comprised primarily of variables, datasets, functions



#### R as Calculator

- 2+2
- 2\*2
- 2\*100/2
- 2^10
- 2\*5^2
- X<-2\*5^2 In R <- indicates that you making an assignment. This will come up often, particularly with data manipulation
- X

#### Operations in R

| Comparison<br>operators  | Purpose                           | Example                  |
|--------------------------|-----------------------------------|--------------------------|
| ==                       | Equal                             | 1==1 returns TRUE        |
| !=                       | Not equal                         | 1!=1 returns FALSE       |
| <>                       | Great/less than                   | 1<1 returns FALSE        |
| >= <=                    | Greater/less than or equal        | 1<=1 returns TRUE        |
| Logical operators        |                                   |                          |
| &                        | And—must meet both condition      | 1==1 & 1<1 returns FALSE |
| (above backslash<br>key) | Or—only needs to meet 1 condition | 1==1   1<1 returns TRUE  |

- A text file containing commands that you would enter on the command line of R
- To place a comment in a R script, use a hash mark (#) at the beginning of the line

- In the R console, you can create a new script (from the file menu → "New Script") and write all of your R code there
- This allows you to save your code (but not output) for later
- To place a comment in a R script, use a hash mark (#) at the beginning of the line

e

-

-

[]]



R

w

P

0 💆

9

| RGui (64-bit)                                                                                                                             |                       |   | - o > | × |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|-------|---|
| File Edit Packages Windows Help                                                                                                           |                       |   |       |   |
| 28 Pl 🗖 🖨                                                                                                                                 |                       |   |       |   |
| R Console                                                                                                                                 | ٦                     |   |       |   |
| R version 3.2.3 (2015-12-10) "Wooden Chri                                                                                                 | ans-Iree              | ^ |       |   |
| Platform: x86_64-w64-mingw32/x64 (64-bit)                                                                                                 | 🖟 Untitled - R Editor |   |       |   |
| R is free software and comes with ABSOLUTEI<br>You are welcome to redistribute it under ce<br>Type 'license()' or 'licence()' for distrib |                       |   |       |   |
| Natural language support but running in a                                                                                                 |                       |   |       |   |
| R is a collaborative project with many cont<br>Type 'contributors()' for more information<br>'citation()' on how to cite R or R packages  |                       |   |       |   |
| <pre>Type 'demo()' for some demos, 'help()' for<br/>'help.start()' for an HTML browser interfac<br/>Type 'q()' to quit R.</pre>           |                       |   |       |   |
| [Previously saved workspace restored]                                                                                                     |                       |   |       |   |
| > 1!=1<br>[1] FALSE<br>>                                                                                                                  |                       |   |       |   |
| ¢                                                                                                                                         |                       |   |       |   |
|                                                                                                                                           |                       |   |       |   |
| L                                                                                                                                         |                       |   |       |   |

9

[]]

O 🎽 P 🗎

7:37 AM

10/3/2017

6



- When working from your script, you can highlight sections of code and press "F5" to automatically get the code to run in the R console
- When saving your script, type the extension ".R" after the file name so that your computer recognizes that it is an R file (e.g., Hadeel.R)
- You can then open previously saved scripts to re-run or modify your code

#### Saving Output (Results)

- Saving output using R's menu options can be annoying
- One option is to copy and paste (into a Word document) the output that you need while working
- Problem with waiting until the end:
  - You end up copying a bunch of code and output you may not need (e.g., you'll be copying all your errors)
  - At some point, the R console window fills up and you can't access your earlier work
- When copying and pasting your R output, you can change the font to "Courier New" and the output will line up and look pretty



- Everything that you work within R is an object
- Types of objects include vectors, matrices, and data frames
- To see which objects are available in the "workspace" (i.e., R memory) use the command ls() or objects()
- You can remove objects with the rm()function
- The class() function tells you the type of object

#### Objects in R- Vectors

- An ordered collection of numerical, categorical, complex or logical objects
- vec1<-1:10
- vec1

This is putting numbers 1 through 10 into a vector called, "vec1"

- [1] 1 2 3 4 5 6 7 8 9 10
- class(vec1)
- [1] "integer"

#### **Objects in R-Vectors**

vec2<-LETTERS[1:10]</li>

This is putting letters A (1st letter) through J (10th letter) into a vector called, "vec2"

- vec2
- [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"
- class(vec2)
- [1] "character"

#### Objects in R- Matrix

- A matrix is a *multidimensional collection of data entries* of the same type
- Matrices have two dimensions: rows and columns



#### Objects in R- Matrix

• mat1 <- matrix(vec1, ncol = 2, nrow = 5)

|      | [,1] | [,2] |
|------|------|------|
| [1,] | 1    | 6    |
| [2,] | 2    | 7    |
| [3,] | 3    | 8    |
| [4,] | 4    | 9    |
| [5,] | 5    | 10   |

- class(mat1)
- [1] "matrix"

#### Objects in R- Matrix

- To find the dimensions (i.e., number of rows and columns) of the matrix:
- dim(mat1)
- [1] 5 2
- Print the data in the first row of the matrix:
- mat1[1,]
- [1] 1 6

#### Objects in R- Data Frame

- A data.frame may be regarded as a matrix with columns that can be different modes (e.g., numeric, character)
- It is displayed in matrix form, by rows and columns
- It's like an excel spreadsheet
- This is primarily what we will be using when analyzing our data in R

#### Objects in R- Data Frame

- Creates a data frame from the matrix we had previously made:
- df1<-data.frame(mat1)</li>
- df1

#### Objects in R- Data Frame



#### Objects in R-Let's Play a little with the Data Frame





- R help is web-based—each function has its own page
- On the bottom of each page, R gives us an example of each function
- ?ls
- help(ls)
- ?colnames
- ?c



- R is built around packages
- R consist of a core (that already includes a number of packages) and contributed packages programmed by user around the world
- Contributed packages add new functions that are not available in the core (e.g., genomic analyses)
- In computer terms, packages are ZIP-files that contain all that is needed for using the new functions

#### Downloading R Packages

- Two main functions when installing and loading packages:
- 1. install.packages()
  - With nothing in parentheses: list all packages available to install
  - With the name of package in parentheses: install that package. The package will live permanently on your hard drive, you don't need to install again (unless you download a newer R version)
  - After entering this command, you will select a CRAN Mirror (a server from where package will be downloaded)

#### **Downloading R Packages**

- Two main functions when installing and loading packages:
- 2. library()
  - With nothing in the parentheses, this will list all packages that are currently loaded
  - Each time you open R, you must load the installed packages you would like to use by running the library command with the package name listed in the parentheses

#### Example Downloading Package

- The Introductory Statistics with R book comes with a package that contains many example datasets that we will be using
- Install and load the package called "ISwR"
- install.packages("ISwR")
- library(ISwR)

#### **Built-in Datasets**

- By default, R is also pre-loaded with a small set of datasets and each package often comes with example datasets
- Several commands are helpful when exploring these built-in datasets:
- data(): Lists available datasets
- help(NAME OF DATASET): Brief description of dataset
- NAME OF DATASET: Prints the entire dataset—be careful!

#### **Built-in Dataset Example**

- Look at the dataset "energy" from the ISwR package
- help(energy)
- energy

## Now that we understand some basic R functions.. How can I work with my dataset???



#### Reading Data into R

- Reading data into R using the function read.csv.
- Reads in data that are in the comma delimited format
- Excel spreadsheet containing data example: "fev1.csv"
- The dataset contains variables on subject number (variable name=subject), forced expiratory volume (variable name=fev1), and gender (variable name=gender)

#### How to know if my dataset is in CSV format?

- If your data are in excel, you can save into a commadelimited format
- Use "saving as" and selecting "CSV (Comma Delimited)"

#### Now how will R now where the dataset is?

- Tell R the location of the data you will be reading in
- First know the working directory by using getwd() command
- To change working directory

| File | Edit                     | View                       | Misc                 | Packages | Window                                   | vs Help                          |                   |
|------|--------------------------|----------------------------|----------------------|----------|------------------------------------------|----------------------------------|-------------------|
|      | Source<br>New so<br>Open | e R cod<br>cript<br>script | e                    |          |                                          |                                  |                   |
|      | Load<br>Save             | Worksp<br>Worksp           | <br>ace<br>ace       | Ctrl+S   | _cs2"                                    | "dat"<br>"m.rr.hakn"<br>"res.rr" | "df<br>"ma<br>"ve |
|      | Load<br>Save I           | History.<br>History.       |                      |          | irro:<br>) : 1                           | r for use in t<br>no packages we | his               |
|      | Chan                     | ge dir                     |                      |          |                                          |                                  |                   |
|      | Print.                   | o File                     |                      | Ctrl+P   | :/Users/hadee/Docu<br>sthb.dz/bin/window |                                  | men<br>s/c        |
|      | Exit                     |                            | zip' length 218398 b |          |                                          |                                  |                   |

package 'ISwR' successfully unpacked and MD5 su

#### Now you can read your Dataset

- In the flash memory handed please save the file fev1.csv in your working directory (eg. Documents)
- Read the file:
- fev<-read.csv("fev1.csv", header=TRUE)</li>

fev is the name of the object that contains our data."fev1.csv" is the name of the csv file we created.header=TRUE indicates that the first row of data are variable names.

#### Attributes of Datasets and Variables

| Function      | Purpose                                        |
|---------------|------------------------------------------------|
| For datasets  |                                                |
| dim           | Gives dimensions of data (#rows, #columns)     |
| names         | Lists the variable names of data               |
| head          | Lists first 6 rows of data                     |
| tail          | Lists last 6 rows of data                      |
| class         | Lists class of the object (e.g., data frame)   |
| View          | Displays data like a spreadsheet               |
| For variables |                                                |
| is.numeric    | Returns TRUE or FALSE if variable is numeric   |
| is.character  | Returns TRUE or FALSE if variable is character |
| is.factor     | Returns TRUE or FALSE if variable is factor    |

#### Exercise Exploring "fev" Dataset

- What are the dimensions of the dataset?
- Print the dataset
- What class is the dataset?
- What are the variable names of the dataset?
- Look at the first few and last rows of the data
- Print the variable fev1
- What type of variable is fev1? What about gender?

### Now let us actually run some statistics in R



#### **Descriptive Statistics in R**

- Has functions for all common statistics
- summary() gives lowest, mean, median, first, third quartiles, highest for numeric variables
- table() gives tabulation of categorical variables
- Many other functions to summarize data

#### Summarizing Data in R

• We will be summarizing the FEV dataset using:

Means, SD, ranges, quartiles, histograms, boxplots, proportions and frequencies

#### **Functions to Describe Variables**

| Function                     | Purpose                                             |
|------------------------------|-----------------------------------------------------|
| Continuous variables         |                                                     |
| mean(data\$var)              | Mean                                                |
| sd(data\$var)                | Standard deviation                                  |
| summary(data\$var)           | Min, max, q1, q3, median, mean                      |
| min(data\$var)               | Minimum                                             |
| max(data\$var)               | Maximum                                             |
| range(data\$var)             | Min & Max                                           |
| median(data\$var)            | Median                                              |
| hist(data\$var)              | Histogram                                           |
| boxplot(data\$var)           | Boxplot                                             |
| Categorical/Binary variables |                                                     |
| table(data\$var)             | Gives frequency of different level of the variable  |
| prob.table(table(data\$var)) | Gives proportion of different level of the variable |

#### Exercise Summarizing Data in "fev" Dataset

- What is the mean, SD, median, min, and max of fev1?
- Use two different plots to look at the distribution of fev1. Is it normally distributed?
- What is the frequency of each gender? What is the proportion of each gender?
- How does the proportion of gender 1 compare to the proportion of gender 2?
- What does the histogram of gender look like?

#### Statistical Modeling in R

- So many modeling functions: e.g. Im, glm, aov, ts
- Numerous libraries and packages: survival, coxph, nls,
- Distinction between factors and regressors

Factors: categorical, regressors: continuous

• Must specify factors unless they are obvious to R

#### Statistical Modeling in R

• Specify your model like this:

➤y = outcome variable, xi = main explanatory variables, ci = covariates, + = add terms

#### **Example for Linear Regression**

- Read new dataset
- Ibwt<-read.csv("Ibwt.csv", header=TRUE)</li>

### Example: Linear Regression with Continuous Predictor

First we usually test correlations

- Scatterplot: plot(lbwt\$headcirc~lbwt\$gestage) #simple plot
  - >plot(lbwt\$headcirc~lbwt\$gestage, col="red", xlab="Gest. Age (weeks)", ylab="Head Circumfference (cm)", main="Scatterplot")
- Pearson correlation:

cor.test(lbwt\$headcirc,lbwt\$gestage)

### Example: Linear Regression with Continuous Predictor

Then we run the linear regression model:

- Im1<-Im(headcirc~gestage, data=lbwt)</li>
- summary(lm1)
- plot(lbwt\$headcirc~lbwt\$gestage, col="red", xlab="Gest. Age (weeks)", ylab="Head Circumfference (cm)", main="Scatterplot", xlim=c(0,35), ylim=c(0,35))
- abline(Im1)
- abline(a=3.19, b=0.78)

## How to Learn More About R?





- R home page: http://www.r-project.org
- R discussion group: http://www.stat.math.ethz.ch/mailman/listinfo/r-help
- Search Google for R and Statistics

#### **Tutorials**

- http://www.statmethods.net/stats/
- http://scc.stat.ucla.edu/mini-courses
- http://www.ats.ucla.edu/stat/R/

#### Top 10 Great Books About R

 http://www.datasciencecentral.com/profiles/blogs/10great-books-about-r-1

## Thank you

